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A multiblock structured grid solver for 3D Euler/Navier-
Stokes equations is developed in this study. The solver employs 
the finite difference method together with the lower-upper 
factored scheme to provide fast solutions, while the use of 
multiblock structured grids allows the algorithm to be applied 
to complex geometries.

The developed solver is then tested on a "body-only" 
axisymmetric model with a single-engine fighter aft-end which 
was previously investigated experimentally. The numerical 
results of the pressure distributions on the model's body 
obtained by the solver are compared to the experimental 
results. The numerical and experimental results were found to 
be in good agreement, indicating that the solver can sufficiently 
solve the flow equations, and represent the physical properties 
of the flow.
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ÜÇ BOYUTLU EULER/NAVİER-STOKES DENKLEMLERİ İÇİN 
ÇOK BLOKLU YAPISAL AĞLI ÇÖZÜCÜ GELİŞTİRİLMESİ VE 
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Euler çözücü, çok bloklu 
çözücü, yukarı-aşağı 
yaklaşık çarpanlarına 
ayırma

Bu çalışmada üç boyutlu Euler-Navier Stokes denklemleri için 
çok boyutlu yapısal ağlı bir çözücü geliştirilmiştir. Çözücü, 
denklem çözümleri için sonlu farklar metodu ve yukarı-aşağı 
yaklaşık çarpanlarına ayırma algoritması kullanmaktadır. 
Çok bloklu yapısal ağ kullanımı ise algoritmanın kompleks 
geometriler için kullanımına olanak sağlamaktadır. Geliştirilen 
çözücünün doğruluğu, daha önce deneysel olarak test edilen 
tek motor arka gövde etkileşimi sonuçlarıyla karşılaştırılmıştır. 
Geliştirilen çözücünün kullanımıyla elde edilen sayısal veriler, 
deneysel verilerle uyumluluk gösterdiğinden, geliştirilen 
çözücünün akış fiziğini yeteri kadar temsil edebildiği 
gösterilmiştir.

Anahtar kelimeler	 Öz
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1. Introduction

The use of numerical methods in the solution of aerodynamic engineering prob-
lems provides great convenience when compared to experimental studies. It is 
not always feasible to reproduce an entire system to test in wind tunnels, and 
even so, experimental testing requires time and is a costly process. On the ot-
her hand, it is possible to quickly evaluate and apply the modifications proposed 
during the design process, using numerical methods. For this reason, numerical 
aerodynamic analyses gain great importance in the overall design process, from 
conceptual design to detailed design, and it is of great importance to develop a 
solver that can quickly and accurately model aerodynamic analyzes of complex 
geometric structures.

Solvers for three-dimensional (3D) Euler/Navier Stokes equations of compres-
sible flows were developed in several different studies. The foundations on this 
subject were laid by the pioneering work of Pulliam and Steger (1980). They 
developed an implicit, finite difference method to solve compressible unsteady 
inviscid or thin-layered viscous 3D flows, which provided reasonably accurate 
solutions for simple aerodynamic configurations. Obayashi and Fujii (1985) suc-
cessfully applied the lower-upper alternating-direction implicit (LU-ADI) facto-
red scheme to solve the thin layer Navier-Stokes equations. Other studies applied 
these methods to multiblock structured grids (Leyland & Vos, 1995; Rizzi et al., 
1993; Siclari et al., 1989; Yadlin & Caughey, 1991).

The use of multiblock structured grids in numerical analysis has many advanta-
ges. By decomposing the grids into a number of topologically simpler blocks, it is 
straightforward to conduct numerical analyses of complex geometries and flows 
(Blazek, 2005). Since each block can be solved independently of the others, the 
multi-block approach can easily be applied to parallel computing (Takaki et al., 
2002). The computational time can be greatly reduced in this manner.

This study aims to develop a 3D multiblock Euler/Navier Stokes equations sol-
ver, using the finite difference method and lower-upper (LU) factored scheme, 
and to verify the accuracy of the solver by comparing it with the experimental 
data. A multiblock structured grid, consisting of two blocks, is used for the com-
putational domain. The numerical results obtained by the solver are compared 
to Berrier’s experimental work on AGARD AR-303 (Berrier, 1994). The pressure 
coefficients along the body of the model are considered for the comparison of the 
numerical and experimental data.

2. Formulation of the Numerical Method

The nondimensionalized form of the three-dimensional Navier-Stokes equations 



Mühendis ve Makina / Engineer and Machinery 64, 711, 386-395, 2023

389

for an unsteady compressible viscous flow in the curvilinear space (ξ,η,ζ,τ) can 
be written as 

∂_τ q ̂+∂_ξ E ̂+∂_η F ̂+∂_ζ G ̂=k∂_ζ S ̂/Re 	 				     (1)

where

𝑞̂𝑞 = 𝐽𝐽−1

[
 
 
 

𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌
𝑒𝑒 ]

 
 
 
, 𝐸̂𝐸 = 𝐽𝐽−1

[
 
 
 
 𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜉𝜉𝑥𝑥𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌+ 𝜉𝜉𝑦𝑦𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜉𝜉𝑧𝑧𝑝𝑝

(𝑒𝑒 + 𝑝𝑝)𝑈𝑈 − 𝜉𝜉𝑡𝑡𝑝𝑝]
 
 
 
 
, 𝐹̂𝐹 = 𝐽𝐽−

[
 
 
 
 𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜂𝜂𝑥𝑥𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌+ 𝜂𝜂𝑦𝑦𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜂𝜂𝑧𝑧𝑝𝑝

(𝑒𝑒 + 𝑝𝑝)𝑉𝑉 − 𝜂𝜂𝑡𝑡𝑝𝑝]
 
 
 
 
, 𝐺̂𝐺 = 𝐽𝐽−1

[
 
 
 
 𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜁𝜁𝑥𝑥𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌+ 𝜁𝜁𝑦𝑦𝑝𝑝
𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜁𝜁𝑧𝑧𝑝𝑝

(𝑒𝑒 + 𝑝𝑝)𝑊𝑊 − 𝜁𝜁𝑡𝑡𝑝𝑝]
 
 
 
 
,  

 

 

𝑆̂𝑆 = 𝐽𝐽−1

[
 
 
 
 
 
 
 0

𝜇𝜇(𝜁𝜁𝑥𝑥
2 + 𝜁𝜁𝑦𝑦

2 + 𝜁𝜁𝑧𝑧
2)𝑢𝑢𝜁𝜁 + (𝜇𝜇 3⁄ )(𝜁𝜁𝑥𝑥𝑢𝑢𝜁𝜁 + 𝜁𝜁𝑦𝑦𝑣𝑣𝜁𝜁 + 𝜁𝜁𝑧𝑧𝑤𝑤𝜁𝜁)𝜁𝜁𝑥𝑥

𝜇𝜇(𝜁𝜁𝑥𝑥
2 + 𝜁𝜁𝑦𝑦

2 + 𝜁𝜁𝑧𝑧
2)𝑣𝑣𝜁𝜁 + (𝜇𝜇 3⁄ )(𝜁𝜁𝑥𝑥𝑢𝑢𝜁𝜁 + 𝜁𝜁𝑦𝑦𝑣𝑣𝜁𝜁 + 𝜁𝜁𝑧𝑧𝑤𝑤𝜁𝜁)𝜁𝜁𝑦𝑦

𝜇𝜇(𝜁𝜁𝑥𝑥
2 + 𝜁𝜁𝑦𝑦

2 + 𝜁𝜁𝑧𝑧
2)𝑤𝑤𝜁𝜁 + (𝜇𝜇 3⁄ )(𝜁𝜁𝑥𝑥𝑢𝑢𝜁𝜁 + 𝜁𝜁𝑦𝑦𝑣𝑣𝜁𝜁 + 𝜁𝜁𝑧𝑧𝑤𝑤𝜁𝜁)𝜁𝜁𝑧𝑧

{(𝜁𝜁𝑥𝑥
2 + 𝜁𝜁𝑦𝑦

2 + 𝜁𝜁𝑧𝑧
2)[0.5𝜇𝜇(𝑢𝑢2 + 𝑣𝑣2 + 𝑧𝑧2)𝜁𝜁 + 𝜅𝜅𝑃𝑃𝑃𝑃 −1(𝛾𝛾 − 1)−1(𝑎𝑎2)𝜁𝜁] 

+(𝜇𝜇 3⁄ )(𝜁𝜁𝑥𝑥𝑢𝑢 + 𝜁𝜁𝑦𝑦𝑣𝑣 + 𝜁𝜁𝑧𝑧𝑤𝑤) × (𝜁𝜁𝑥𝑥𝑢𝑢𝜁𝜁 + 𝜁𝜁𝑦𝑦𝑣𝑣𝜁𝜁 + 𝜁𝜁𝑧𝑧𝑤𝑤𝜁𝜁)} ]
 
 
 
 
 
 
 

    

 

and k=0 for inviscid flow, and k=1 for viscous flow. μ is the dynamic viscosity, and 
Re and Pr represent the Reynolds and Prandtl numbers, respectively. U,V and  W 
terms in Eqs. 1 are defined as 

U=ξt+ξx u+ξy v+ξz w 

V=ηt+ηx u+ηy v+ηz w 							        (3)

W=ζt+ζx  u+ζy v+ζz w  

and the pressure term, p is defined as follows:

p=(γ-1)[e-0.5(u2+v2+w2 )]   						       (4)

where γ is the specific heat ratio of the ideal gas, and is equal to 1.4. The speed of 
sound term, a in Eq. 2 is expressed by using the ideal gas law, as follows:

𝑎𝑎 = √𝛾𝛾𝛾𝛾/𝜌𝜌 							        (5)

The metrics required to solve Eqs. 1 are as follows:

𝜉𝜉𝑥𝑥 = 𝐽𝐽(𝑦𝑦𝜂𝜂𝑧𝑧𝜁𝜁 − 𝑦𝑦𝜁𝜁𝑧𝑧𝜂𝜂) 𝜂𝜂𝑥𝑥 = 𝐽𝐽(𝑧𝑧𝜉𝜉𝑦𝑦𝜁𝜁 − 𝑦𝑦𝜉𝜉𝑧𝑧𝜁𝜁)

𝜉𝜉𝑦𝑦 = 𝐽𝐽(𝑧𝑧𝜂𝜂𝑥𝑥𝜁𝜁 − 𝑧𝑧𝜁𝜁𝑥𝑥𝜂𝜂) 𝜂𝜂𝑥𝑥 = 𝐽𝐽(𝑥𝑥𝜉𝜉𝑧𝑧𝜁𝜁 − 𝑥𝑥𝜁𝜁𝑧𝑧𝜉𝜉)

𝜉𝜉𝑧𝑧 = 𝐽𝐽(𝑥𝑥𝜂𝜂𝑦𝑦𝜁𝜁 − 𝑦𝑦𝜂𝜂𝑥𝑥𝜁𝜁) 𝜂𝜂𝑧𝑧 = 𝐽𝐽(𝑦𝑦𝜉𝜉𝑥𝑥𝜁𝜁 − 𝑥𝑥𝜉𝜉𝑦𝑦𝜁𝜁)

𝜁𝜁𝑥𝑥 = 𝐽𝐽(𝑦𝑦𝜉𝜉𝑧𝑧𝜂𝜂 − 𝑧𝑧𝜉𝜉𝑦𝑦𝜂𝜂) 𝜉𝜉𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜉𝜉𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜉𝜉𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜉𝜉𝑧𝑧 

𝜁𝜁𝑦𝑦 = 𝐽𝐽(𝑥𝑥𝜂𝜂𝑧𝑧𝜉𝜉 − 𝑥𝑥𝜉𝜉𝑧𝑧𝜂𝜂) 𝜂𝜂𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜂𝜂𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜂𝜂𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜂𝜂𝑧𝑧 

𝜁𝜁𝑥𝑥 = 𝐽𝐽(𝑥𝑥𝜉𝜉𝑦𝑦𝜂𝜂 − 𝑦𝑦𝜉𝜉𝑥𝑥𝜂𝜂) 𝜉𝜉𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜁𝜁𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜁𝜁𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜁𝜁𝑧𝑧 

𝐽𝐽−1 = 𝑥𝑥𝜉𝜉𝑦𝑦𝜂𝜂𝑧𝑧𝜁𝜁 + 𝑥𝑥𝜁𝜁𝑦𝑦𝜉𝜉𝑧𝑧𝜂𝜂 + 𝑥𝑥𝜂𝜂𝑦𝑦𝜁𝜁𝑧𝑧𝜉𝜉 − 𝑥𝑥𝜉𝜉𝑦𝑦𝜁𝜁𝑧𝑧𝜂𝜂 − 𝑥𝑥𝜂𝜂𝑦𝑦𝜉𝜉𝑧𝑧𝜁𝜁 − 𝑥𝑥𝜁𝜁𝑦𝑦𝜂𝜂𝑧𝑧𝜉𝜉

 

 (2)
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𝜉𝜉𝑥𝑥 = 𝐽𝐽(𝑦𝑦𝜂𝜂𝑧𝑧𝜁𝜁 − 𝑦𝑦𝜁𝜁𝑧𝑧𝜂𝜂) 𝜂𝜂𝑥𝑥 = 𝐽𝐽(𝑧𝑧𝜉𝜉𝑦𝑦𝜁𝜁 − 𝑦𝑦𝜉𝜉𝑧𝑧𝜁𝜁)

𝜉𝜉𝑦𝑦 = 𝐽𝐽(𝑧𝑧𝜂𝜂𝑥𝑥𝜁𝜁 − 𝑧𝑧𝜁𝜁𝑥𝑥𝜂𝜂) 𝜂𝜂𝑥𝑥 = 𝐽𝐽(𝑥𝑥𝜉𝜉𝑧𝑧𝜁𝜁 − 𝑥𝑥𝜁𝜁𝑧𝑧𝜉𝜉)

𝜉𝜉𝑧𝑧 = 𝐽𝐽(𝑥𝑥𝜂𝜂𝑦𝑦𝜁𝜁 − 𝑦𝑦𝜂𝜂𝑥𝑥𝜁𝜁) 𝜂𝜂𝑧𝑧 = 𝐽𝐽(𝑦𝑦𝜉𝜉𝑥𝑥𝜁𝜁 − 𝑥𝑥𝜉𝜉𝑦𝑦𝜁𝜁)

𝜁𝜁𝑥𝑥 = 𝐽𝐽(𝑦𝑦𝜉𝜉𝑧𝑧𝜂𝜂 − 𝑧𝑧𝜉𝜉𝑦𝑦𝜂𝜂) 𝜉𝜉𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜉𝜉𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜉𝜉𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜉𝜉𝑧𝑧 

𝜁𝜁𝑦𝑦 = 𝐽𝐽(𝑥𝑥𝜂𝜂𝑧𝑧𝜉𝜉 − 𝑥𝑥𝜉𝜉𝑧𝑧𝜂𝜂) 𝜂𝜂𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜂𝜂𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜂𝜂𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜂𝜂𝑧𝑧 

𝜁𝜁𝑥𝑥 = 𝐽𝐽(𝑥𝑥𝜉𝜉𝑦𝑦𝜂𝜂 − 𝑦𝑦𝜉𝜉𝑥𝑥𝜂𝜂) 𝜉𝜉𝑡𝑡 = −𝑥𝑥𝜏𝜏𝜁𝜁𝑥𝑥 − 𝑦𝑦𝜏𝜏𝜁𝜁𝑦𝑦 − 𝑧𝑧𝜏𝜏𝜁𝜁𝑧𝑧 

𝐽𝐽−1 = 𝑥𝑥𝜉𝜉𝑦𝑦𝜂𝜂𝑧𝑧𝜁𝜁 + 𝑥𝑥𝜁𝜁𝑦𝑦𝜉𝜉𝑧𝑧𝜂𝜂 + 𝑥𝑥𝜂𝜂𝑦𝑦𝜁𝜁𝑧𝑧𝜉𝜉 − 𝑥𝑥𝜉𝜉𝑦𝑦𝜁𝜁𝑧𝑧𝜂𝜂 − 𝑥𝑥𝜂𝜂𝑦𝑦𝜉𝜉𝑧𝑧𝜁𝜁 − 𝑥𝑥𝜁𝜁𝑦𝑦𝜂𝜂𝑧𝑧𝜉𝜉

 The interior points are evaluated using the second-order central difference met-
hod, and the boundaries are evaluated using three-point one-sided formulas. The 
nondimensionalization of the Eqs. 1 is realized by the following terms:

𝜌̅𝜌 = 𝜌𝜌
𝜌𝜌∞

, 𝑢̅𝑢 = 𝑢𝑢
𝑢𝑢∞

, 𝑣̅𝑣 = 𝑣𝑣
𝑣𝑣∞

, 𝑒̅𝑒 = 𝑒𝑒
𝜌𝜌∞𝑎𝑎2

, 𝑝̅𝑝 = 𝑝𝑝
𝜌𝜌∞𝑎𝑎2

, 𝑡𝑡̅ = 𝑡𝑡𝑡𝑡
𝑙𝑙 , 𝜇̅𝜇 = 𝜇𝜇

𝜇𝜇∞
, 𝑅𝑅𝑅𝑅 = 𝜌𝜌∞𝑙𝑙𝑎𝑎∞

𝜇𝜇∞

 
where the subscript ∞ corresponds to the freestream conditions and l corres-
ponds to the reference length.

An implicit method is chosen to solve the Eqs. 1, since implicit methods can help 
to avoid the restrictive stability conditions of the time-step size when using small 
grid sizes. Applying this implicit method to Eqs. 1 yields:

Δ𝑄̂𝑄𝑛𝑛 + ℎ(𝐸̂𝐸𝜉𝜉
𝑛𝑛+1 + 𝐹̂𝐹𝜂𝜂

𝑛𝑛+1 + 𝐺̂𝐺𝜁𝜁
𝑛𝑛+1 − 𝑅𝑅𝑒𝑒−1𝑆̂𝑆𝜁𝜁

𝑛𝑛+1) = 0   			    (6)

where n corresponds to the time-step, and the first term on the left-hand side of 
the equation is expressed as follows:

𝛥𝛥𝑄̂𝑄𝑛𝑛 = 𝑄̂𝑄𝑛𝑛+1 − 𝑄̂𝑄𝑛𝑛  						       (7)

and 𝑄̂𝑄𝑛𝑛 = 𝑄̂𝑄(𝑛𝑛Δ𝑡𝑡) .
The flux vectors, E,F,G, and S, which are the nonlinear functions of Q can be exp-
ressed using the Taylor expansion as follows:

𝐸̂𝐸𝑛𝑛+1 = 𝐸̂𝐸𝑛𝑛 + 𝐴̂𝐴𝑛𝑛Δ𝑄̂𝑄𝑛𝑛 + 𝑂𝑂(ℎ2)

𝐹̂𝐹𝑛𝑛+1 = 𝐹̂𝐹𝑛𝑛 + 𝐵̂𝐵𝑛𝑛Δ𝑄̂𝑄𝑛𝑛 + 𝑂𝑂(ℎ2)

𝐺̂𝐺𝑛𝑛+1 = 𝐺̂𝐺𝑛𝑛 + 𝐶̂𝐶𝑛𝑛Δ𝑄̂𝑄𝑛𝑛 + 𝑂𝑂(ℎ2)

𝑅𝑅𝑒𝑒−1𝑆̂𝑆𝑛𝑛+1 = 𝑅𝑅𝑒𝑒−1[𝑆̂𝑆𝑛𝑛 + 𝐽𝐽−1𝑀̂𝑀𝑛𝑛𝛥𝛥𝑄̂𝑄𝑛𝑛] + 𝑂𝑂(ℎ2)    

 
   	

The delta-form is derived by substituting Eqs. 7 and 8 into Eq. 6, as follows:

[𝐼𝐼 + ℎ𝜕𝜕𝜉𝜉𝐴̂𝐴𝑛𝑛 + ℎ𝜕𝜕𝜂𝜂𝐵̂𝐵𝑛𝑛 + 𝜕𝜕𝜁𝜁𝐶̂𝐶𝑛𝑛 − 𝑅𝑅𝑒𝑒−1ℎ𝐽𝐽−1𝑀̂𝑀𝑛𝑛]𝛥𝛥𝑄̂𝑄𝑛𝑛 = −ℎ(𝐸̂𝐸𝜉𝜉𝑛𝑛 + 𝐹̂𝐹𝜂𝜂𝑛𝑛 + 𝐺̂𝐺𝜁𝜁𝑛𝑛 − 𝑅𝑅𝑒𝑒−1𝜕𝜕𝜁𝜁𝑆̂𝑆𝑛𝑛)     (9)

Spatial partial derivatives are discretized using second-order central-difference 

(8)
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method. In this way, the algorithm becomes second-order accurate in space, and 
first-order accurate in time. The solver developed in this study uses the implicit 
factorization method (Beam and Warming, 1976, 1978; Briley and McDonald, 
1973; Lindemuth and Killeen, 1973; Pulliam and Steger, 1980) and the LU-ADI 
scheme (Beam and Warming, 1976, 1978; Obayashi and Fujii, 1985) to solve the 
Eq. 9. The stability problem arising from the non-linear terms is solved by adding 
artificial dissipation terms to the algorithm.

3. Grid Structure and Boundary Conditions

The numerical method developed in this study is tested by using the “body-only” 
axisymmetric model with a single-engine fighter aft-end with convergent diver-
gent nozzles, as described by Berrier (1994). The planform view of the tested 
model can be seen in Figure 1. 

 Figure 1 Planform View of Model Configurations Tested (adapted from Berrier 
(1994)). Dimensions are in Fractions Of Body Length (L)

A semi-cylinder is used to model the flow around the model. The length of the 
model is taken as 1.0L, and the semi-cylinder is 5.0L in length and 4.0L in diame-
ter. Even though the geometry of the model is simple, the flow has complex cha-
racteristics, especially in the exhaust region. That is why, this region is meshed 
using different blocks. Figure 2 shows the multiblock structured grid used in this 
study. The multiblock structured grid consists of a block named as 2nd Block, and 
shown with green lines, and another block, named as 1st Block, shown with red 
lines in Figure 2. The 2nd block starts as in the form of an O-grid structure aro-
und a single axis at the inlet, at x = -1L, passing around the body, which is placed 
along the axis of the cylinder at x = 0, and continuing till the outlet (x = 4L). The 
1st Block rotates around a single line, at the exhaust region, starting at the tail 
of the model and continuing till the outlet. The grids at points very close to the 
model’s boundaries have fine mesh size, while the grid size increases towards 
the outer boundaries.

Next, the boundary conditions are defined for the multiblock structured grid. It 
is very important to define the boundary conditions correctly, and to provide re-
levant information at each block’s boundaries. The boundary conditions for this 
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study are based on the experimental study of Berrier (1994), since the results of 
this numerical simulation are compared to the experimental results of that study. 
In his experiments, Berrier (1994) uses jet-exhaust total pressures (pe), which 
are nondimensionalized by the static pressure of the free stream (p0,∞). Values 
of velocity, density, and energy at the boundaries are set using these pressure 
ratios, assuming the flow is isentropic. For an isentropic flow, the Mach number 
(M) is calculated as follows:

𝑀𝑀 = √{( 𝑃𝑃𝑒𝑒
𝑃𝑃0,∞

)
𝛾𝛾−1

𝛾𝛾
− 1} 2

𝛾𝛾 − 1  				                    (10)

Using Eq. 10, the velocity at the inlet boundary is set, and the density and pressu-
re are set from the following equations:

𝜌𝜌 𝜌𝜌∞⁄ =
(1 + 𝛾𝛾 − 12 𝑀𝑀∞

2 )
𝛾𝛾
𝛾𝛾−1

(1 + 𝛾𝛾 − 12 𝑀𝑀2)
𝛾𝛾
𝛾𝛾−1

⁄  
		                  (11)

𝑃𝑃𝑒𝑒
𝑃𝑃∞

= 𝑃𝑃𝑒𝑒
𝑃𝑃0,∞

(1 + 𝛾𝛾−1
2 𝑀𝑀∞

2 )
𝛾𝛾

𝛾𝛾−1  				                      (12)

In this study, the Mach number at the inlet (x=- L) is taken as 0.9, outlet boundary 
is defined as a pressure outlet, and the pressure ratio of jet exhaust to outlet 
boundary is taken as 2.0. The plane at y = 0 is defined as symmetry boundary 
condition. Research and publication ethics were adhered to in this study.

 
(a) (b) 

Figure 2. Grid Structure Used for the Computational Domain in a 3D view (a) and 
an Orthographic View at the Plane, y = 0 (b)
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4. Results and Discussion

Figure 3a shows the pressure distribution in terms of pressure coefficient, cp, 

over the body and the symmetry plane at y = 0. Figure 3b shows a close-up image 
of the pressure distribution, around the exhaust region, where the flow is expec-
ted to be complex. 

Figure 4 shows the comparison of the numerical data and experimental data of 
pressure coefficients on the body of axisymmetric single-engine fighter. Horizon-
tal axis shows the axial distance downstream from the nose (x), nondimensiona-

 
(a) (b) 

Figure 3. Pressure Distribution in Terms of Pressure Coefficient cp Over the Body 
and at the Symmetry Plane at y = 0 (a), and Around the Exhaust Region at y = 0 (b)

 
Figure 4. Numerical and Experimental Data of Pressure Coefficients (cp) Along 
the Body of Axisymmetric Single-Engine Fighter
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lized by the model length (L), and the vertical axis shows the pressure coefficients 
(cp). The figure shows that the numerical results, obtained by the solver develo-
ped in this study, is in agreement with the experimental results. This shows that 
the 3D solver developed in this study can sufficiently represent the flow around 
the tested model.

5. Conclusion

In this study, a multiblock structured grid solver for 3D Euler/Navier-Stokes equ-
ations was developed. The solver uses the finite difference method together with 
LU scheme, which gives fast solutions, while the applicability of the multiblock 
structured grids allows the algorithm to be used for complex geometries.

The developed solver was then tested on a “body-only” axisymmetric model with 
a single-engine fighter aft-end with convergent divergent nozzles. This model 
was previously investigated experimentally by Berrier (1994). The numerical 
results of the pressure distributions on the body of the model,  were compared 
to the experimental results. The numerical and the experimental results were 
found to be in agreement with each other, showing that the solver can sufficiently 
solve the equations of the flow, and can represent the flow physics.
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